
JOURNAL OF COMPUTATIONAL PHYSICS 66, 356390 (1986) 

Galerkin Method for Differential Equations with 
Regular Singular Points 

A. D. MILLER 

Centre for Mathematical Analysis, 
The Australian National University, Canberra A.C.T., Australia 2601 

AND 

R. L. DEWAR 

Department of Theoretical Physics, Research School of Physical Sciences, 
The Australian National University, Canberra A.C.T. Australia 2601 

Received October 11, 1985; revised February 4, 1986 

DEDICATED TO THE MEMORY OF RAYMOND C. GRIMM 

A Galerkin method is presented for calculating the general weak solution of self-adjoint dif- 
ferential equations with regular singular points, such as the ideal MHD equation for zero-fre- 
quency displacements about a finite beta, cylindrical plasma equilibrium (the Newcomb 
equation). In this case such solutions could be used for constructing the eigenfunctions of 
resistive instabilities by the method of matched asymptotic expansions. A Galerkin method 
using linite elements, singular if necessary, is used to calculate the finite energy part of the 
solution, with the infinite energy part acting as a forcing term. The asymptotic behaviour near 
the singular point is accurately estimated by postprocessing the Galerkin solution using a 
generalized Green’s function method. The effectiveness of the method is demonstrated on 
some simple test cases. r(> 1986 Academic Press, Inc 

1. INTRODUCTION 

Since the work of Furth, Killeen, and Rosenbluth (FKR) [ 11, a standard way to 
treat linear resistive instabilities in weakly resistive plasmas has been to use the 
method of matched asymptotic expansions. In this approach the plasma is 
separated into thin inner layers containing the mode rational surfaces, where 
resistivity and frequency are effectively of order unity, and large outer regions away 
from mode rational surfaces where the eigenfunctions, to lowest order, satisfy the 
linearized ideal (zero resistivity) magnetohydrodynamic equation of motion at zero 
frequency (henceforth called the ideal marginal equation). 

The FKR approach has been generalized to compressible, cylindrical, finite 
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pressure plasmas by Coppi, Greene, and Johnson [2], and this work has in turn 
been generalized to toroidal geometry by Glasser, Greene, and Johnson [3]. 
Recently [4] a similar inner layer method has been developed to treat nonlinear, 
but thin, magnetic islands. In principle, the physics of the inner layer can be 
modelled to almost any level of complexity provided only that the width is small 
compared with typical equilibrium scale lengths. This is because, even in a toroidal 
plasma, the equations which must be solved are one dimensional. Although it may 
well be impossible to solve these equations analytically, the reduction in dimension 
provided by the thin layer approximation greatly reduces the computational time 
for accurate numerical solution of the equations containing the complicated physics. 

In this context we note the exhaustive comparison of three numerical techniques 
for solving the linear resistive inner layer problem recently carried out by Glasser, 
Jardin, and Tesauro [S]. Of particular interest to us here is their general dispersion 
relation, Eq. (94), which shows that in general two exterior quantities, AL and A, 
are needed to determine the growth rate. The quantities A, and A, are, respec- 
tively, the ratios of the leading coeflicients of the nonanalytic Frobenius solutions of 
the ideal marginal equation to the left and right of the mode rational surface. These 
ratios are determined by solving the ideal marginal equation everywhere, except at 
the mode rational surface (where the ideal marginal equation is singular), taking 
proper account of the boundary conditions and other geometric complications such 
as the toroidal nature of the plasma. 

It is the fact that the full geometrical complexity of the problem need only be 
faced using the relatively simple ideal marginal equations which represents the 
power of the matching method. Unfortunately, even with this reduction, the com- 
putational problem is highly nontrivial in realistic geometries. This is due to the dif- 
ficulty of accurately extracting the asymptotic behaviour of the solution in the 
neighbourhood of the singular surface from approximate numerical solutions 
typically based on spatial discretization (e.g., the toroidal stability codes [6, 71). 

This difficulty has led to an attempt [S, 91 to adapt the finite element method of 
[6] so as to represent the singular behaviour more accurately by the use of singular 
elements based on the Frobenius expansion. Mesh refinement near the singular sur- 
face was also used. As well as simply allowing a more accurate representation, the 
singular finite elements were used to perform two important tasks: First, the “big” 
elements (carrying the dominant asymptotic behaviour) were assigned unit 
amplitudes, thus acting as normalized forcing terms for the remaining part of the 
solution. Second, the amplitudes of the “small” elements were interpreted as the 
coefficients of the Frobenius solutions corresponding to the more positive solution 
of the indicial equation, thus giving A, and A,. 

The method has proved quite effective at low plasma pressure, where the 
exponents of the big and small solutions differ by unity, approximately. However, 
convergence problems were encountered for higher pressure equilibria. This led 
[lo] to the examination of a simple one-dimensional test problem to gain an 
understanding of the fundamental basis of the method. Numerical analysis [lo] 
revealed that the singular element procedure as outlined above was very sensitive to 
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small errors near the singular point. It is the purpose of the present paper to present 
an alternative approach which, because it obtains dL or dR by an integration over 
the whole domain of the solution, is much less sensitive to local errors. Also, 
because it separates the representational problem from the problem of extracting 
the asymptotic behaviour, it is not inherently tied to the use of singular elements. 
This makes the method easier to analyze and should make generalization to the 
toroidal case relatively straightforward. To simplify the exposition of the method, 
however, we shall in this paper confine our attention to the one-dimensional 
problem. The results are thus only directly applicable to the determination of the 
resistive stability of a cylindrical plasma of circular cross section. 

The new method was suggested by analogy with the (in some ways similar) 
problem of calculating the coefficients of stress singularities about a crack in an 
elastic solid [ 111. It may also have application in other areas, such as in calculating 
the stability of a shear flow in a weakly viscous fluid [12]. 

2. FORMULATION OF THE PROBLEM 

As our model problem we consider the Newcomb equation [13], 

with the boundary condition 

y(l)=O. (lb) 

Here f(x) and g(x) are smooth functions which are analytic at x = 0. In addition, f 
does not vanish for 0 < x 6 1, though it has a zero of order 2 at x = 0. Without any 
loss of generality we may suppose that f is nonnegative, and that it has the Taylor 
expansion 

&)=x2+ f fmXM, f, real constant, 
m=3 

valid in some neighbourhood of x = 0. Likewise, let the Taylor expansion of g be 

g(x)= f gmx”, g, real constant, 
??I=0 

again converging in some neighbourhood of x = 0. In the plasma stability setting, y 
is the radial component of the plasma displacement, and F is proportional to the 
radial component of the force density (the other two components having been 
assumed to vanish). The point x = 0 corresponds to a mode rational surface with 
the boundary condition (lb) describing a perfectly conducting wall. The boundary 
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value problem (1) models the displacement on one side of a mode rational surface, 
corresponding to the calculation of A, in [S]. The calculation of A, would be com- 
pletely analagous. 

By virtue of our assumptions on f and g, (la) has a regular singular point at 
x =O. Formally at least, a complete set of solutions of (la) can be readily deter- 
mined. We may write the most general solution as 

y(x) = ab ycb’(x) + a, y’“‘(x), (2) 

where ab and a, are arbitrary real constants, and ycb), y’“’ is a suitable pair of 
linearly independent solutions obtained by a Frobenius expansion technique about 
x = 0. The indicial equation in this case is 

a(a+ 1)-g,=o, 

which has roots 

a=ap)- -1/2-p and cc=crl”k -1/2+/A, 

where 

p = (l/4 + gay. 

We shall suppose that 

go> -f. 

This ensures that p is real and positive, and thus 

cp < -+ < cty. 

(3) 

(4) 

In the notation of [3], ,LJ = ( --D1)l12, and (3) corresponds to the Suydam criterion 
for stability of the plasma against ideal interchange modes: if the plasma were 
ideally unstable, resistive stability would only be of academic interest. 

Corresponding to the larger exponent c$) is a solution yt), which has the follow- 
ing expansion valid in some deleted neighbourhood of x = 0, 

y’“‘(x) = x4? Ir f p;)xm, 
??I=0 

where 

pb”‘= 1, 

p’s’= -y C(cr:“‘+l)(crl”‘+m+l)f,+,-,-g,~,lPj”’ 
m = 

/=O 
Mm + 2~) 3 m 1, 2, 3 ,... . (6) 

581/66/2-E 
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Provided 2~ # 1, 2, 3,..., the other component a:) gives rise to a solution yp’ with 
the following expansion, valid in some deleted neighbourhood of x = 0, 

(7) 

where 

(b) = _ PM 
mfl [(~~‘+I)(or~‘+m+l)f,+,+,-g,~,]p(b’ 

m(m - 2~) 
> m = 1, 2, 3 ,... . 63) 

I=0 

If 2~ is a positive integer, the recurrence relation (8) in general breaks down at 
m = 2~. This, however, is just a technical difliculty. It reflects a growing linear 
dependence between yJp) and yt) as p approaches a half integer. It is particularly 
important to be able to treat the case p = t, since this corresponds to a plasma with 
zero pressure gradient at the singular surface. The classical Frobenius technique is 
to define a second solution yr cb) by other means in these exceptional cases. (This 
typically introduces log x terms into the expansion.) However, this is not entirely 
satisfactory, as it does not do anything about the near linear dependence of $1 and 
,v,(,!) for p near, but not at, a half integer. To overcome this difficulty we need to 
redefine ycb) for a full range of p’s by adding appropriate multiples of J$). This can 
be done i; many ways, with one possibility being as follows: Set 

yrn = lmt sin 2prcp$, m = 1, 2, 3 ,..., 
fl+mP 

which is certainly finite. Let y(.) be some sufficiently smooth function defined on the 
positive real numbers which satisfies 

Y ; =YmY 0 m = 1, 2, 3 ,... . 

Now in place of (7), let us redefine y:) by 

which is certainly well defined for 2~ # 1, 2, 3,... . While for the half integers we 
define 

yzj2(x) = lmt Y(~)(X) fl ’ m = 1, 2, 3 ,... . (9b) 
p-42 
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The validity of the limiting process in (9b) is readily seen from the explici 
expression for y(“)(x) IJ 9 

where N, denotes the nearest positive integer to 2~, and for p= m/2 (m = 1,2, 3,...) 
the expressions in { > take their limiting values as p -P m/2. The first expression in 
{ } is finite as p+ m/2, since for n > m, 

$b’ Ym PCS’ 
” -4. 

sin 2~71 

Note that the third term in { } will generate the characteristic log x term at the half 
integers. 

The pair of solutions y:) and yjp) given by (5) and (9) constitute an acceptable 
pair of linearly independent solutions of (la) for all p bounded away from zero. 
They will though, degenerate as ,U approaches zero, but this will not concern us. 
The above construction bears an obvious similarity to the method used to define 
Bessel functions of the second kind [lS]. Note that yf) and yt) have been nor- 
malized such that 

Y(b) Jb) 
~ ffxp and p &) p -xr (x+0+). (11) 

In particular, yfl is dominant, or in the terminology of [ 131, big, at x = 0; while 
y!’ is recessive, or small. 

The solution of (1) is only determined up to an arbitrary multiplicative factor. 
For definiteness, we normalize (2) by requiring that 

or, what is equivalent, 

ab= 1, 

(b) y-Yli (x-+0+). 

(124 

(12b) 

This normalization requires that yfJ(l) # 0, but this will be a consequence of an 
assumption that we shall introduce later (see Lemma A.3 of Appendix A). 

Our interest in (1) lies in the asymptotic behaviour of y near x = 0. As outlined in 
the Introduction, this information may be used to match y to some inner solution 
which is valid in a narrow region about x = 0 where the outer equation (la) may no 
longer be physically reasonable. Given the expansions (5) and (9) for yf) and yib), it 
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is immediate from (2) and (12a) that Q,~ completely determines the asymptotic 
behaviour of y. The task we set ourselves then, is to find the coefficient a,. Let us 
remark that the numerical value of u,~ is of course relative to the particular choice of 
the dominant solution yjp), since we can include arbitrary multiples of yt) in the 
definition of yP . c6) In particular, u,~ is not in general equal to A, of [S], but it con- 
tains the same physical information. In fact, A, = a, - (Y(p))/sin 2,~). Note also that 
for the model problem (1) we have in fact the explicit result 

YCb’( 1) a,= ---&j, (13) 

provided y:)(l) ~0. This, however, may not be a very practical method for 
calculating a,. First, the Frobenius expansions for yib) and ~$1 may not converge at 
x = 1. This could occur if the coefficient functions f and g were not analytic 
throughout all of the interval 0 Q x < 1. Second, even if the expansions converge, 
the calculation of a sufficient number of coefficients pt), pg) may be prohibitive; 
especially, if there is no simple means of obtaining the Taylor series coefficients f,, 
g, of f and g. The main point is, however, that (1) is only a model for problems 
that have a more complex coupling between a “far” boundary condition, such as 
(lb), and the asymptotic behaviour at a regular singular point (see [8,9]). For 
such problems, explicit expressions such as (13) are likely to be even less useful. We 
therefore seek a numerical method for calculating a,, which should have the poten- 
tial to extend to a wider class of problems than just (1). 

We shall proceed in two stages. First, an approximate solution of (la), (lb), 
(12b) will be found using a finite element approach, and second, an approximation 
to a, will be extracted from this approximate solution by a generalized Green’s 
function technique. 

3. FINITE ELEMENT APPROXIMATION 

3.1. The Finite Element Approximation of y 

Our finite element approximation will be based on a Galerkin formulation of (1). 
To see what shape such a formulation should take, multiply the left-hand side of 
(la) by an arbitrary test function u, and formally integrate by parts to obtain 

j’ F(Y)v=f(x)Y’ul:I:-l1 (f(x)Y’o’+g(x)Yv). 
0 0 

Therefore it seems natural to consider the bilinear form 

W(u, u) e I,’ (fu’u’ + gull). (14) 

We start by describing some assumptions on W(., .). 
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Introduce the norm and inner product 

which are defined, at least to start with, for functions belonging to 

9= {UEP([O, 11)). 

Denote by Z? the formal completion of 9 in the norm I( * 11. 2 is a Hilbert space. 
Both the norm II.11 and inner product (e, .) extend naturally to 2, and we may 
regard W(u, u) as defined for all U, u E 2; in fact, for some constant C > 0, 

Define the subspace Z0 E X by 

Ho= {uEJt?;U(l)=o}. 

X0 is also a Hilbert space. We shall assume that W(*, .) is positive definite over X0, 
that is, for some constant q > 0, 

We remark that the validity of our earlier assumption (3) on g,, in fact, follows 
from (16) (see Theorem A.1 of Appendix A). 

The assumption (16) will obviously hold if for some real constant G > 0, 
g(x) 2 G. If g becomes negative though, the situation is more delicate. For our 
model problem the Newcomb condition [13] provides a sufficient criterion for (16) 
to be valid. 

Because of the obvious mechanical analogy we shall sometimes refer to W(u, U) 
as the “energy” of U. In a plasma context it is proportional to the quadratic part 6 W 
of the plasma potential energy after minimization over components of the plasma 
displacement lying within the magnetic surfaces [ 131. Thus (16) is simply the 
assumption of ideal stability. The kinetic energy does not enter as we are solving 
the ideal marginal equation. 

Functions in &? are well behaved away from x = 0. However, as x + O+, 
~-~-like growth is permitted as long as j3 < l/2. In particular, the ~-“~+@-like 
growth of the recessive solution y:) is admissible, while the ~-‘/~-“-like behaviour 
of the dominant solution $,!J is not (see Lemma A.2). It would seem then that a 
straightforward Galerkin formulation of (1) based on the bilinear form W(., .) is 
not possible, as the energy W(y, y) of the solution itself would be infinite. To over- 
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come this difftculty we need to decompose the solution y into a finite energy part 
and an infinite energy part. To do this, recall (12a) and rewrite (2) as 

Y(X) = Yob) + Y,(X), (17) 

where y, is the first N, + 1 terms of (lo), 

(184 

and 

Yob) = a Y’“‘(X) + (Y’b’(x) -Y s P P (x)) ‘x2 . (18b) 

Note that the asymptotic behaviour of ye(x) as x + 0+ is 

Ye(X) - 
u,xa~) + (j(xcxt’+ 1 +min(O, N,- 2~)) if 2p#N,, 

a,x”:) + 0(x*:‘+ l log x) if 2p=NN,. 
(19) 

Thus y. has admissible behaviour at x = 0, and moreover its leading term is just 
a,~‘?. Note also that for all p the difference between the order of the leading term 
and the order of the remainder of y, is uniformally bounded away from 0. 

Using the decomposition (17) we may rewrite (1) as 

-~(Yo)=~~Ym)~ O<x<l, (2Oa) 

Ye(l)= -Ym(l). (2Ob) 

This can be regarded as a boundary value problem for the unknown y,, with boun- 
dary condition and forcing term derived from the known ym Multiplying (20a) by 
an arbitrary test function v E X0 and integrating by parts gives 

The endpoint terms on the left-hand side will both vanish, since v = 0 at x = 1, while 
near x = 0, f(x) yb has an x 1/2+p-type behaviour with v growing no faster than 
x . - “* Thus y. satisfies 

yoE& - (24: u(x)=u(x)-yy,(l), UEXo}, Wa) 

VVEsf& @lb) 

where the trial space XI is simply a translation of the test space X0 to accom- 
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modate the boundary condition (20b). On the other hand, standard Hilbert space 
theory [14] shows that (21) has a unique solution. Thus the formulation (21) com- 
pletely characterizes y,. It will be the basis of our finite element method. Note that 
implicit in (21) is the extra “boundary condition” of (20) at x = 0, 

f(x) $3 = axl’z), x+0+. 

Let $0 be some finite element subspace of X0. We shall be more specific concern- 
ing $0 in Section 4; for the moment we just want to outline the general approach. 
We seek a function jjO which satisfies 

j+% - (24: u(x)=u(X)-~y,(l), UE%$$}, Pa) 

Wb) 

Standard theory [ 143 guarantees that such a y,, exists and is unique. We also have 
the usual finite element orthogonality relation 

WYCI-AJ, u)=O, VU&$& Wa) 

and the best approximation result 

IIYo-hll “C”i$ IIYo--VII 

for some constant C > 0, independent of y0 and 8. 

WI 

3.2. Extraction of the Coefficients a, 

Once we have the finite element solution &,, we must then somehow extract an 
approximate value for a,, the coefficient of the leading term of y,. We shall employ 
what can be termed a generalized Green’s function technique [ 111. This technique 
relies upon deriving a suitable integral representation for a, in terms of y, and y,. 

To describe the method, let I,+ be a function which satisfies 

(i) $(x) N x++’ 
(ii) d$fdx - txr)x”% ‘, 

as x+0+, Pa) 

(iii) $(l)=O, Wb) 

(# is not related to the magnetic flux, often also denoted by I++ in plasma 
applications). 

An obvious choice would be 

be) = #o(x) = Y,(X) - -v,(l), (25) 
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but for the moment we shall work with a general Ic/ satisfying (24). Now multiply 
(20a) by + and integrate by parts twice over the interval E < x f 1, where E > 0 is 
arbitrary. This gives 

=f(x) 2 (x) l&x) //_I 

x = E 

-f(X)Yo(X) g (xl l-x=‘+[’ F($) YO. 
x=8 E 

Consider the endpoint terms in more detail. At x = 1, they reduce to 

by virtue of (24b) and (20b). Using. the asymptotic properties (19) and (24a) of y, 
and II/, respectively, and the fact that f(x) N x2, it follows that in the limit as 
E --f 0 + the x = E endpoint terms yields 

lmt 
E-O+ [ 

.f(&) 2 (6) tit&) -A&) YO(E) g (8) = 2~7,. 1 
So taking the limit E + 0 + in (26) and rearranging we find 

This is the basic integral representation that we shall exploit. Note that if we were 
able to choose J/ so as to satisfy 

F(ti)=O (28) 

as well as (24), then (27) would provide a representation for a, solely in terms of 
the known right-hand sides of (20). We could think of $ as a Green’s function for 
a, in this case. Usually, however, we cannot readily satisfy (28), and must be con- 
tent with (27) in its general form which includes the weighted integral of y,. In this 
case we choose to call $ a generalized Green’s function. Its usefulness lies in the fact 
that if we replace y, in (27) by Jo, all other terms of (27) being known, we will 
obtain some approximation for a,. Intuitively we might expect this approximation 
to be reasonably accurate, since it is obtained by a weighted averaging of Jo. We 
shall now show that this is the case. 
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From now on we only consider the particular choice $ = tiO given in (25). Note 
in this case that 

F(+o) = 
i 

0(x ~+1/2+min(O,N,,-2~1))+0(~) if 2p#NN, 
0(x” + 1’2 log x) + O(x) if 2p=NP. 

Since y, = 0(x -1’2+P), it follows that the first integral of (27) is proper. We may 
therefore rewrite (27) as 

Ws=j-; F(+o)Yo+ j; W,)tio+f(l)~,(l) $ (11, (29) 

where the second integral may be improper. Denote by ii, the approximation to a, 
obtained from 

2pli, = j1 F($o)Jo+ j1 F(Y,) $o+f(l)~m(l) 2 (1). 
0 0 

(30) 

Subtracting (30) from (29) gives 

Was - as) = s ; I;(ll/o)(~o - Jo)> (31) 

showing that the error in ii, is some weighted average of the error in the 
approximate solution j. over the entire interval. To gain some further theoretical 
understanding of (a,--&) let us introduce (just for the purpose of the error 
analysis) the auxiliary problem 

-J’(t) = F(IcIo)> 

5(1)=0 

f(x) 5’ = 0(x1/2), x+0+. 

Just as for (20), this can.be cast in a weak Galerkin form 

In particular, making the choice u = (y, - PO) we obtain from (31), 

2Aas - 5,) = 1,l F($o)(Yo - 90) 

(32) 

(33) 

= WL Yo - PO) 

= ~(r-%Yo-~o) 
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for any u E s0 by (23a) (note that W(., .) is symmetric). Thus by (15), 

using (23b). What we see here, is that the error in c?, can be directly related to how 
well the solutions y, and 5 of (20) and (32) can be approximated by finite element 
functions from %r and 2& respectively. This clearly will have a bearing on how we 
should choose the finite element subspace &. We take this matter up in the next 
section. 

4. CHOICE OF FINITE ELEMENT SUBSPACE s? 

4.1. “Singular” Behaviour of y, and r 

The obvious conclusion to be drawn from the estimate (34) is that & should be 
chosen so as to optimize, in some sense, the accuracy of the approximation of y, 
and r by functions from % and s0 as measured in the norm 11. II. This accuracy 
will, to a large extent, be influenced by any “singular” behaviour that y, or 5 may 
display. Let us gather together some information on this aspect of y, and 5. First, 
we know that y, is relatively well behaved away from x =O, but near x = 0 it 
behaves as 

ye(x) = o(x-“2+p), 

i 

312 + P 
yb(x) = 0(X- 1 if p#t 

0(1% xl if p = 4, 

1 

o(x-5’2+q if p#$,+ 
y;;(x) = 0(x-‘) if I*=; 

wx3 xl if I= +. 

(35) 

A similar result holds for 4. To see this, note that by (32) F(< + $,,) = 0, and so 
using (2) we must have 5 = A, yf) + A,yf) - rl/O for certain real constants A,, A,. 
Applying the boundary condition of (32) at x = 1 allows us to eliminate A,, and 
thereby obtain 

t(x) = -4 $$+ Ye”’ + Ab yf’(x) - t+bJx) 
u 

assuming that yF)( 1) # 0 (see Appendix A). Requiring that X’ = 0(x’/*) implies, in 
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particular, that A, = 1 to ensure that the x- iI’--P term of Ii/,,(x) is cancelled. In fact, 
the first N, + 1 terms of yjp) are eliminated by this choice. Thus by (13) and (25), 

ax) = as Yl”‘(X) + b+?(x) - YAX)) + XY’,(l) 

=Yo(x)+vb,(l) (36) 

using (18b). 
To quantify the “singular” nature of the kinds of functions we are handling it is 

convenient to introduce a class of weighted norms. For any real number 0 <B < 1 
and suitable function U, define the norm 

III III = [j 1 
up 0 u2 + +42 + x2(1 + 8) (Urf)2]1’2. 

Note that if u is a well-behaved function away from x = 0, and near x = 0 it satisfies 
u = O(xa), U’ = 0(x’-‘), and U” = 0(x”- 2, with a > -f then II) u 111 B < cc as long as 
/? > l/2 -a. In particular, by (35) and (36) 

III Yo Ill/b Ill 5 lllp < 00 (1 -j4<p< l), (37) 

with the exceptional case of p = t, 

III Yo Ill p, III 5 Ill p < a9 O</?<l. (38) 

4.2. The Finite Element Mesh 

Consider a partition of the interval [0, 11, 

o=x,<x, < ... <xM= 1, (39) 

say. For the moment we shall only consider linear elements; that is, we consider 
functions which are linear on each element (xi, xi+ i) (i = O,..., M- 1) individually, 
and which are continuous at each internal nodal point xi (i = l,..., M - 1). Any such 
function can be expanded as 

u(x)= f u(xi)Vpi(x), 

i=O 

1 

\ A/ 

% f % 

0 
x0=0 x1 xi-1 4 Xi+1 X.&l xu=l 

5 

FIG. 1. The linear shape functions cp,. 
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where the (pi are local “shape” functions (see Fig. 1) given by 

0, X<Xip, orx>xj+, (i’ I,..., M- I), 

We choose $0 to be the linear span of (pO, (p, ,..., (p,,,- , ; that is, the space of all 
functions of the form 

M-I 

ufxf = C vi(Pr(x), u, real constant. (41) 
i=O 

Clearly $e is a subspace of X0, and the corresponding 2, is the set of all functions 
of the form 

M-1 

D(x)= c vi~i(x)-yco(1)~M(x)9 ui real constant. (42) 
i=O 

In terms of the ‘pi the finite element equations (22b) may be written as a system 
of linear equations for the unknown nodal values jo(xi) (i = O,..., M- l), 

M-1 
iTo w(cPi3 cPj)J?O(xi)= 1 J 

I &co) ‘p/Y j = O,..., h4 - 2 

O (43 1 

s 

1 

~(Y,)cp,-l+~(cp,,cp,-,)Y,(l), j=M-1. 
0 

Because of the local support of the shape functions (pi, the matrix W(cp,, cp,) is 
tridiagonal. This permits very efficient solution procedures. 

To completely specify %. we need to decide upon a particular partition (39). The 
simplest choice would be a uniform partition. As we shall see in Section 5 where we 
discuss some numerical examples. Such a choice often proves quite satisfactory. 
Indeed, we would expect a uniform mesh to be reasonable away from x = 0, for, as 
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we saw in Section 4.1, both y0 and l are well behaved there. It is around x= 0, 
where y0 and l have some form of “singular” behaviour, that a nonuniform mesh 
may be called for. For a given positive integer IV, we would ideally like a prescrip- 
tion for a partition (39) that leads to optimal approximations for y0 and 5: in the 
norm )I.)). This of course is asking too much; however, we can at least say 
something in this respect in an asymptotic sense (i.e., as M -+ co ). First, let us define 
some classes of nonuniform meshes. 

A convenient method of describing nonuniform meshes is by means of a mesh 
grading function. If A is a strictly increasing function from [0, l] to [0, l] such 
that A(0) = 0 and A(1) = 1, we shall call A a mesh grading function. For any 
positive integer A4 we can generate a partition of [0, l] from A by 

i = O,..., M. 

For instance, if A(t) = t then (44) generates a uniform mesh; while if A(t) = tY, y > 1, 
then the partition is nonuniform, with mesh points being concentrated near x = 0 
(see Fig. 2). We can think of such mesh grading functions as relating a nonuniform 
mesh in the original variable x = A(t) to a uniform mesh in the “stretched” variable 
t = XI/y. 

Let D > 0 and 0 6 1~ 1. We shall say that the partition (39) is of class (D, ,I) if 

(i) 
D 

xi+i -xi< - x?, 
M 

i = l,..., M - 1 

(ii) D-l 
1 D 

Ml/(‘-A) G x1 GM,,” PA). 

Meshes of class (D, 4) are relatively easy to construct. For instance, 

FIG. 2. Mesh grading function d(t). A uniform mesh in the r-variable generates a nonuniform mesh 
in the x-variable. 

(45b) 
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LEMMA 4.1. All meshes generated by (44) using the mesh grading function 
A(t)=t?, y>l, are of class (D(y), 1 -(l/y)) where D(y)>0 is some number 
depending on y. 

Proof See Appendix B. 1 

We shall say that %& 8 are of class (D, 2) if the corresponding mesh (39) is of 
class (D, I). 

THEOREM 4.2. (i) Suppose 9, is of class (D, A), and that 111 y, 111 i. < 00, then 

inf UER, II YO - 4 6 $ III YO III 1, 

where C = C(D, 1) > 0 is a constant depending only on D and A. 

(ii) Suppose so is a class (D, A), and that [I( < [)I1 < co, then 

where C = C(D, 1) > 0 is a constant depending only on D and 1. 

Proof: See Appendix B. 1 

An immediate corollary is 

COROLLARY 4.3. Suppose %o, 8 are of class (D, A) where A > 1 - u, L 2 0 then 
both 

“$, II Yo--vll? inf II< - ~11 = O(M-‘). 
usRo (46) 

In particular, (46) will hold if the partition (39) is generated by the mesh grading 
function 

d(t) = P, (47) 

where 

For the exceptional case u = $, the choice A = 0, y = 1 (uniform mesh) will give (46). 

Proof The result (46) follows from Theorem 4.2 upon recalling (37) (or (38) if 
p = 1). Lemma 4.1 then implies the special case covered by (47). 1 

The practical conclusion to be drawn from this corollary is that by a suitable 
mesh grading we can always ensure that y, and r are approximated by %. and $I 
with an error in the norm ~~~~~ of O(M-‘) as M-, co, where M is the number of 
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mesh points. If p > 1, then a uniform mesh (d(t) = t) will achieve this asymptotic 
rate, whereas if 0 -CP < 1 a graded mesh, such as that generated by (47), will in 
general be necessary. The asymptotic rate of O(M-‘) predicted by the corollary is 
actually optimal, in the sense that no matter what partition (39) is used, 20 cannot 
approximate in the norm II.II any better than O(M-‘), except in some special cases 
(e.g., linear functions on [0, 11). 

Returning now to our primary objective of approximating a,, the estimate (34) 
shows that if the partition (39) is chosen as above then 

4.3. Singular Elements 

Ia, - cl,( = O(AF). (48) 

In the last section we utilized mesh gradings in an attempt to overcome the 
problems caused by the singular behaviour of y. and 5 near x = 0 when p 9 1. From 
one point of view, however, this is not a particularly efficient remedy, especially as 
p + 0. To see why, consider the mesh grading function (47), say. For any mesh 
generated by this grading function the proportion 13 of mesh points located in the 
subinterval (0,6) of (0, 1) is 8 = ~5”~ > 6”. Note that 8 -+ 1 - as p -+ O+; that is, for 
sufficiently small values of p, the mesh grading function (47) is packing the majority 
of mesh points into the (arbitrarily) small neighbourhood (0,6). All these mesh 
points will have a minimal influence on how well the “smooth” parts of y, and t 
can be approximated; their only role is to approximate the singular behaviour in 
(0, 6). But the form of this singularity is precisely known from (19); and so it would 
seem to make sense to somehow use this information directly in the finite element 
approximation, rather than rely upon the finite element equations themselves to 
discover it at the cost of a large number of extra degrees-of-freedom. 

One technique for doing this is to enrich the finite element spaces $o, 8 by the 
addition of a so-called singular shape function which has the required &‘-type 
singular behaviour built into it. However, there are conflicting considerations 
surrounding the use of such functions. On one hand, computational efficiency 
would tend to favour singular shape functions with only local support: that is, they 
should overlap with as few as possible of the “regular” shape functions ‘pi of Section 
4.2. The system of linear algebraic equations arising from (22b) would then remain 
relatively sparse. On the other hand, the singular nature of x’;’ is felt on some fixed 
(i.e., mesh independently) subinterval of (0, 1). The support of the singular shape 
function should therefore spread over this entire subinterval; but as the mesh size 
decreases, this leads to overlap with more and more regular shape functions, and a 
consequent loss of sparsity in the resulting algebraic system. 

We shall adopt a combined mesh grading and singular element approach, which 
attempts to minimize the “wastage” of mesh points implicit in the mesh gradings of 
Section 4.3, yet maintains the tridiagonal character of the resulting algebraic 
system. We restrict ourselves to the case p < f. This is not an unreasonable restric- 
tion, since the dificulties with the mesh grading approach mentioned above only 
became significant as ,u -+ 0. 
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FIG. 3. The singular shape function a,, in the case p =0.3. 

Given the partition (39), define the singular shape function (see Fig. 3), 

o<x<x, 

x,<x<x, 

x>x* 

(@a) 

and the regular shape functions 

@i(X) 5 cp,(x), i = 2,..., M. (49b) 

Note that the support of @, extends only over the interval 0 < x <.x2. Observe also 
that any function u in the linear span of the @ls can be written 

u(x) = f U(Xi) Q;(x). 
i= 1 

We define the finite element subspace $0 by 

i 

M-l 

20= u:u(x)= c uiGi(x), ui real constant . 
i= I 

Clearly s0 c ZO, and the corresponding translated space $I is simply the set of all 
functions of the form 

M-1 

u(X)=~‘~e ui@i(x)-Ym(l) @,44tX), ui real constant. 
i= 1 
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In place of the linear system (43) we now have 

M-l 
F(Y~) @ji, j= l,..., M-2 

I, ’ Q,)@M-, + W@M, @M-,).YYao(lh j=M- 1. 
0 

The local support of both 
the matrix W(Qj, Qj) will 

the regular and singular shape functions guarantees that 
be tridiagonal. 

Again let D > 0 and 0 < rZ < 1. We shall say that the partition (39) is of class 
(D, I, *) if it has the following properties 

375 

(i) D-1 
D 

M 
<X, G-9 

M (5Oa) 

D 
(ii) xi+r-xi<-XX:, 

M 
i= l,..., M- 1. (job) 

Partitions satisfying (50) are relatively easy to generate. For instance, 

LEMMA 4.4. Let L > 0, y > 1. Define the partition (39) by 

x0=0, 

L 
x, =-) 

M 

Xf=[($)” +(l-($)“‘)$+]‘, i=2,...,M-1, (51) 

xM- , -1 

then, provided M> max(2, L), the partition is of class (D(y, L), 1 - (l/y), *), where 
D(y, L) > 0 is some number depending on y and L, but not M. 

Proof: See Appendix C. 1 

Note that in the limit as y + cc (with M fixed) the partition (51) becomes 

x,=0, 

L 
XI =-) 

M 
L (M-MM- 1) 

xi= - 0 M 7 i = 2,..., M - 1, 

X - 1. fu- 

581/66/2-9 
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In particular, the mesh points do not accumulate around a single point as occurred 
for the corresponding limiting case of (47). 

We shall say that %0, 8 are of class (D, I, p) if the partition (39) is of class 
(D, I, *). The third parameter p is included to clearly indicate that the definition of 
the singular shape function @i by (49a) depends on p. 

THEOREM 4.5. suppose S?ff, sI are of class (D, 1, p) where I> 1 - p, L > 0 then 
both 

In particular, (52) will hold if the partition (39) is generated by (51) with y > l/p, 
y>/ 1. 

Proof: See Appendix C. 1 

Thus, by the combined mesh grading, singular element approach we are again 
able to approximate y, and 5 to within O(M- ‘) in II*)I. The estimate (48) will also 
follow just as in Section 4.2. 

In Section 4.2 and 4.3 we have really only taken account of the behaviour of y, 
and 5 near x=0. Away from x = 0 both functions were assumed to be relatively 
well behaved. Our mesh grading strategy was based on the premise that the 
singular behaviour near x = 0 was the principle source of numerical error. While 
this will certainly be true in the limit as M + co, it need not be the case in practice 
when, of course, we are dealing with some finite M. Thus, although Theorems 4.2, 
4.3, 4.5, etc., will, strictly speaking, remain valid in such circumstances, the con- 
clusions drawn from them may not yield particularly efficient meshes. For instance, 
according to the strategy outlined above, uniform meshes should be used whenever 
p > 1; however, it would seem reasonable that for “large” values of p some form of 
mesh grading towards x = 1 may be justified. A more careful analysis is needed to 
cover such cases than we can go into here. 

5. NUMERICAL EXAMPLES 

In this section we shall present a variety of numerical examples to illustrate some 
of the points made in our earlier theoretical discussion. 

5.1. A Class of Test Problems 

Our test problems will all be of the simple form 

-(a+bx+cx2)y=0, O<x<l, 

y(l)=@ (53) 
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where u> --a, b and c are constants. The parameter ,U is then given by 

p = (a + up* > 0. (54) 

After some manipulation, the Frobenius solutions (5) and (7) can be recognized as 
(assuming c # 0) 

y(s)(x)=x-(l’*)+~e~ex”M(f+~++, 1+2p, ex) P 

and provided 2,~ # 1, 2, 3,..., 

(55) 

y@‘(x) = x - P (l’*)--pe--Bx’*M(f-~+IC, 1-2p, ex), (56) 

where 8 = 2c’/*, Ic = b/l-l and M(., *, .) is the confluent hypergeometric Kummer 
function [15]. In the case K=O (i.e., b=O), (55) and (56) become expressible in 
terms of either Bessel functions or modified Bessel functions depending on the sign 
of c (see [15]). 

As discussed in Section 2, we need to redefine the second solution yf) given by 
(56) if we are to have an acceptable pair of linearly independent solutions for a full 
range of $s. Proceeding as in Section 2, we choose to define 

~04 = sin 2~71 P!(Q) 9 2p # 1, 2, 3,..., 

m 
v 0 = ,yt2 Y(P), m = 1, 2, 3 ,..., 

(57) 

where we have written PC:(~) to clearly indicate that p$j depends on ,U other than 
just through the index N, (see (8)). We may then redefine yjp) by (9). Admittedly, y 
will in general have discontinuities at the odd quarter-integers where the index N, 
jumps; however, this causes us no problem. Note that the customary second 
solution of a confluent hypergeometric equation, in terms on either the Kummer 
function U or the Whittaker function W (see [ 15]), is not entirely satisfactory for 
our purpose, since both U and W become increasingly linearly dependent on M as 
certain combinations of their parameters are approached. 

For the special case c = 0, the solutions corresponding to (55) and (56) are 

y’“‘(x) = x-(l/*)+P P HZ0 (1 :;,,, s 
and 

yw(X)=X-u/*)-P P .to (1 ““,), ST 

(58) 

(59) 

where (e),, is Pochhammer’s symbol, defined by (z)~ = 1, (z), = (z),-, (z+n - 1). 
Again y$‘) may be redefined using (57) and (9). 

The various choices of a, b, and c that we shall consider are listed in Table I. 
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TABLE I 

Example 
a, b, c (zero unless 
otherwise stated) 

1 c= -3 OS 0 -1 
2 a=20,c=l 4.5 4 -5 
3 a = 0.8525, b = - 1.86, c = 0.36 1.05 0.55 -1.55 
4 a= -0.0415,6=2 0.45 -0.05 -0.95 
5 a = -0.1875, c = 1 0.25 -0.25 -0.15 
6 a = -0.24, c = 1 0.1 -0.4 -0.6 

These will give values for the small exponent a:’ ranging from the badly singular 
LX:) = -0.4, to the well behaved a, cS) = 4. Because of the relative simplicity of the 
Frobenius expansions (55), (56), (58), and (59) it is not difficult to find exact values 
for a, using (13); these can then be used to judge the accuracy of our 
approximations d,. 

We shall also be interested in comparing our post-processed approximation for a, 
with that obtained by other, more .“direct” methods. Given the asymptotic relation 
(19), perhaps the most straightforward approach to finding a, is simply to take the 
limit 

a,= lmt y,(x) 7 . .x-o+ x% 

This suggests the approximation 

(61) 

where x* is some mesh point “close” to x = 0. (Of course, in the case IX?) = 0, we 
could use x* = 0.) This method may be thought of as a pointwise “fitting” of Jo to 
the known asymptotic form of y,. There is, of course, no reason why this approach 
should only utilize the first term of (19); more sophisticated versions of (61) could 
fit jjo to more and more terms of (19) at x*. We shall, however, only consider the 
basic fitting method (61). 

We may estimate the error in a,* by writing 

Using (19) we find that the second term of (62) behaves like 

O((X*)l+min(0.N,,--2~)) if 2p#N,, 

0(x* log x*) if 2p=NN,. 

(62) 

(63) 
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Note that if a more sophisticated fitting method were used, the analog of this term 
could be made higher order in x *. However, such modifications of (61) would not 
appreciably alter the first term of (62); it would retain the form 

Yo(x*) - Bob*) 
(x*y:s’(l +0(l))’ (64) 

Thus, there are two considerations influencing the accuracy of ad: first, x* needs to 
be close to x = 0 so that (63) is sufficiently small, and second, JO(x*) must be 
accurate enough for (64) also to be small. As we shall see in some of the examples, 
these are sometimes conflicting considerations. 

5.2. Discussion of Examples (see Figs. 4 and 5) 

EXAMPLE 1. Here a sequence of uniform meshes was used, with the spaces %0, 
% being as described in Section 4.2. As can be seen, both ri, and a: (with x* = 0) 
appear to converge as M-* (curves (a) and (b)). On the other hand, if the fitting 
point x* is chosen to be nI , the nearest mesh point to x = 0, then af only converges 
at a rate of M-l. This is consistent with (61); for if we suppose on the basis of 
curve (b), that (64) converges as MP2, then the major contribution to the error in 
a,* will come from (63), which in this case behaves as 0(x*) = O(M-I). (The extra 
log x* factor of (63) not being present in this particular case.) Note also that the 
error for (c) is some two orders of magnitude greater than that for either (a) or (b). 
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(I 
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'O 2o M 4' 
Example 1 Example 2 Example 3 

FIG. 4. Relative error ]u,~ -u:S’]/Ja,l in estimates for the coefficient a, of the small solution, using (a) 
the generalized Green’s function method [a:‘= ci,, see Eq. (30)], and (bk(d) 
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Example 4 

0.01 
I I 

10 20 M 40 80 

Exompls 5 Example 6 

FIG. 5. Relative errors, as in Fig. 4: (a) and (A) using generalized Green’s function method, and (b) 
and (B) using generalized derivative method [(b) x* =x,, (B) x* = 0.011 versus M, the number of mesh 
points. In cases (a) and (b) a uniform mesh is used, while a graded mesh is used in cases (A) and (B). 
Example 4 p = 0.45. Example 5, p = 0.25. Example 6, p = 0.1. See text for further details. 

EXAMPLE 2. In this example, the same sequence of uniform meshes and spaces 
$o, 2i as in Example 1 was used. We see again that ii, converges as M-* (curve 
(a)). The behaviour of a,*, however, is now quite different. Choosing x* = x,, the 
closest mesh point to x = 0, gives an approximation a: which does not seem to con- 
verge (curve (b)), whereas placing x* at some fixed point (i.e., the same point for all 
meshes) seems to give an MP2 rate of convergence (curves (c) and (d)). To see 
what this means, again consider (62). For the choice x* =x,, the term (63) will 
obviously tend to 0 as x* + 0. So the obvious conclusion is that the term (64) does 
not converge as M-+ 00. Note that this implies that no generalization of (61) based 
only on increasing the order of (63) will be successful. This sort of behaviour is 
perhaps not unexpected, since (64) corresponds in some sense to taking an “c$)th 
derivative” of Jo at x = 0. On the other hand, if we fix x*, the term (64) should con- 
verge as M + co, but now (63) will not. The apparent M-* rate of convergence of 
(c) and (d) presumably means that for the range of M under consideration, the 
contribution of (64) overwhelms that of (63). However, as M+ co, the (fixed) term 
(63) must ultimately dominate and the curves (c) and (d) will flatten out. Note that 
the curves (c) and (d) represent errors some three orders of magnitude greater than 
that of curve (a). 

EXAMPLE 3. In this example the value of p, and consequently that of a:), has 
been decreased in comparison to Example 2. The uniform meshes and associated 
spaces *o, 8 of the previous examples have been retained. Again we see that ii, 
appears to converge, at least initially, as M-*. (The slight flattening of curve (a) 
from M= 40 to M= 80 is conjectured to be caused by accumulated numerical 
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roundoff. Bear in mind that for M= 80, a, and d, differ only in the fifth significant 
figure.) Turning now to af, we see that a choice of x* = x, gives an apparent rate of 
convergence of M-o.3 (curve (b)); whereas letting x* be fixed (curve (c)) seems to 
lead to the flattening out of the error predicted in the discussion of Example 2. 

EXAMPLE 4. For this example p = 0.45. Our theory of Section 4 predicted that 
uniform meshes were not “optimal” in this case. In (a) and (b) the errors in Lz, and 
a,* (for x* = x1) are plotted for a sequence of uniform meshes. These appear to con- 
verge as M-‘.2 and M-O.‘, respectively. Next, a combined mesh grading and 
singular element approach was taken. In particular the meshes were constructed by 
taking 

x,=0, 

x1 = 0.01, 
(65) 

xj = (.Ol)“? + (1 - (.Ol)“?) ; 1 y, i = 2,..., M - 1, 

X -1 M- 3 

with y = 2 ( w l/p) and M = 10, 20, 40, 80. The spaces 20, 21 were then constructed 
as described in Section 4.3. The corresponding errors in cl, and a,* (with x* = 0.01) 
are shown in curves (A) and (B), respectively. Observe that we have regained the 
Md2 rate of convergence for ii,, and that we again see the flattening out of the error 
in a: that we have come to expect for cases where x* is fixed. For the range of M 
considered here, there is little difference between the uniform and graded meshes as 
far as the accuracy of d, is concerned. Indeed, the uniform mesh leads to a more 
accurate value to start with (M= 10,20). 

The mesh (65) differs slightly from that described, say, by (51) in that x, is fixed. 
Of course we must imagine xi as having an M-‘-type behaviour as M+ cc. We 
chose the value X, on the basis that it should approximately equal AK’ for the 
largest M being considered (M = 80). 

EXAMPLE 5. This example with p = 0.25 (CC,!?)= -0.25) represents a more 
singular case than the previous one. With a uniform mesh, cl, now only converges 
as M-o,5 whereas af (with x* =x1) does not appear to converge at all. With the 
combined graded mesh, singular element approach described for the previous exam- 
ple, but now with y = 4 ( = l/p), we obtain an apparent M-’ rate of convergence for 
both d, and ad (with x* =O.Ol). 

EXAMPLE 6. In this example we take p even closer to the critical case p = 0. For 
uniform meshes ii, now converges as M-0.25, and again a,* (with x* =x1) does not 
seem to converge at all. The combined graded mesh, singular shape function 
approach with y = 10 (= l/p) in (65) suffices to give an apparent Me2 rate of con- 
vergence for both LT, and a: (with x* = 0.01). 
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Observe that although in Examples 4-6 we have always been able to achieve an 
Me2 rate of convergence for d, by suitable mesh grading, etc., the general level of 
error has tended to increase as ~1 approaches 0. This is consistent with the theory 
outlined in Section 4, where a more careful analysis would show that the generic 
constants appearing in the various estimates become unbounded as p -+ 0+ 
(y+co, A+ l-, etc.). 

6. CONCLUSIONS 

We have presented an efficient and accurate finite element method for computing 
the coefhcient of the leading term of the recessive solution of an ordinary differen- 
tial equation at a regular singular point, given an appropriate normalization of the 
dominant solution and a boundary condition at a finite distance from the singular 
point. 

Such singular differential equations arise in the theory of resistive modes in a slab 
or cylindrical plasma with high magnetic Reynolds (Lundquist) number, [ 11. This 
was the motivation for the development of this method. The advantage of the 
Galerkin formulation is its ready generalization to partial differential equations 
with singular surfaces, as are encountered in a toroidal or helical plasma. The 
Frobenius expansion of the ideal marginal equation near a singular surface is more 
complicated in two dimensions, but can be carried out compactly in operator 
notation [ 171, or in Fourier representation when straight-magnetic-field-line coor- 
dinates [18] are used. The weak solutions do not, as in the one-dimensional case, 
separate into those with support to one side or the other of the singular layer, but 
instead are global. The Galerkin method handles such global problems easily. 

It is anticipated that the present method, when generalized to two dimensions, 
and implemented in the PEST 3 program, will represent a significant improvement 
over the singular element method used previously [8,9]. It should be noted that 
the present method shares with all boundary layer methods the problem that, when 
the exponent - $ + p of the recessive (small) solution differs from the exponent 
-i - p of the dominant (big) solution by a large number, then many terms of the 
Frobenius expansion of the big solutions will need to be computed (otherwise, the 
remainder would overwhelm the small solution). Thus the boundary layer approach 
would not be very appropriate for such cases, unless an analysis of the physics of 
the inner layer showed that the big solutions are negligible at such singular layers. 
If this were the case, then ideal MHD would apply in the neighbourhood of 
singular layers for which p $1, and so the standard Galerkin approach [6] could 
be used. 

Another area where our analysis of the outer problem suggests a re-examination 
of the inner, boundary layer theory is in the appropriate definitions of the “big” and 
“small” solutions. To construct a theory uniformly valid for all p, whether near a 
half integer or not, we were led to redefine the big solution to be a linear com- 
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bination of the big and small solutions, as conventionally defined [2, 33. This 
should be reflected also in the asymptotic analysis of the inner layer equations as 
1x1 + 03, where x is the scaled distance from the singular surface. 

APPENDIX A 

THEOREM A.l. If (16) holds, then go > -a. 

Proof: For any o! > -$ and I> 6 > 0, define 

i 

xX-6”, O<x66 
fJ= 

0, 6<xXl. 

It is readily verified that ueZO . Let us evaluate 

W(u, u)=j6f(uf)2+gu2 
0 

= s b (x2 + o(x3))(u')2 + (go + O(x)) u2 
=i ( a2 

2a+1+go 
A-.-&+ 1)) P+l+ o(P+2) 

by our assumptions on f and g. Likewise 

M12= (- 2aa; * +A---&+ 1) P+l. 

By (16), W(u, u) > q I( VII * and so we have after dividing by 8” + ‘, 

a2 
2a+l +go ( 

j-$--$+‘)+w~ 

ar 
( &+%&-iiS+‘)~ 

Letting 6 -+ O-t, multiplying through by 2a + 1, and then letting a + -t + we find 

a+goB? 

which proves the result. 1 

LEMMA A.2. If u E 2, then 

lmt x”‘u(x) = 0. 
x-o+ 
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Proof: To begin with suppose u E 9, and let rj E C” [0, l] be a cutoff function 
which is unity in some neighborhood [0, S], and which vanishes at x= 1. Writing 
U = ~4, we clearly have for any x > 0, 

U(x)= -1’ U’(t) dt. 
x 

so 
Jx’W(x)I = x”2 1s: u(t) dti 

<x11* 

(1 

’ ,U’(t),* t* dt)“* (l; ;)“’ 
x 

<X’J2 ,U’(t),* t2 dt)“* (;- 1)1’2 

< I ’ lU’(t)12 t*dt (l-~)“~ 
0 

I/* <C u2 + t2(u’)2 dt , 

for some constant C > 0. In particular, if 0 < x < 6 

Ix1’2u(x)I G c (lull. (A.11 

Now if u E X, there must be some sequence u, E 9 such that u, + u in 2’. In par- 
ticular it follows from (A.l) that for any XE (0, 6), 

IX”%,(X) - x”*u,(x)I < c IIU, - z&II. 

Since this convergence is uniform on (0, a), it follows that x’/*u,,(x) must converge 
pointwise to a continuous function on [0, S], Thus 

lmt x”*u(x) = jm; ,?J+ x”*u,(x) = 0 I 
x-o+ 

LEMMA A.3. If (16) holds, then the coefficient ab of yj,!) in (2) will vanish if and 
only if y is identically zero on (0, 1). In particular, y$)( 1) # 0. 

Proof. (a) Suppose y is identically zero on (0, l), that is 

ab y@)(x) + a y’“)(x) = 0 P s P 3 O<x<l. 

So multiplying through by x(~‘~)+~, and then letting x + 0 + , shows that ab = 0. 
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(b) Conversely, suppose that ab = 0. Then y = a, yr) E x; moreover, because 
of (lb), JJ( 1) = 0, and so y E ZO. It follows then, by the same sort of considerations 
used to obtain (21), that 

In particular, I+‘( y, y) = 0, and so by (16), y = 0. 
(c) Suppose by way of contradiction that $)( 1) = 0; then, y = yt)(x) would 

satisfy (1). Thus by (b) above, y:)(x) must vanish identically on (0,l). But this is 
clearly impossible, since J$)(x)~x-(~‘~)+~ as x+0+. 1 

APPENDIX B 

Proof of Lemma 4.1. First, we show (45a). For i = 1, 2 ,.., M- 1, 

A (2$)-, (-i-)=(2&(&) 

L.((l+f)Y1) 

=- iy 
( 
; y(l+<)‘-’ 

) 

by the mean value theorem, where 0 < < < l/i < 1. Thus 

gy2YA’ i Y l-(llY) 

A4 L( )I iii 
which is precisely (45a) with D = ~2~~ ‘, 1= 1 - (l/y). 

For (45b), we need only note that with the above choice of i, 

2 
0 A4 

= M-Y = M-M--i)) . I 

Proof of Theorem 4.2. The proofs of parts (i) and (ii) of the theorem are almost 
identical. We shall only deal with (ii) here. 

Define U E x0 by requiring 

U(O) = 5(x1 ), 

u(xi) = 5txi), i= l,..., M- 1. 
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In addition, we have since U E & and r E X0, 

U(x,) = 5(XM) = 0. 

Consider the interval Ji = (xi, xi+ I), i = l,..., A4 - 1. U is linear on Ji, and it inter- 
polates < at the endpoints of Ji. It is a standard result (see, e.g., [ 161) that for some 
generic constant C > 0, independent of the mesh and of l, 

1, (t(X)- u(X))‘< C lJi14 iJ, (l”(X))2 dx, (B.1) 

where ) Jil = (xi+, -xi) denotes the length of the interval Ji. Turning now to 

lJ, x2(5’(x) - U(x))‘G (Xi+ A2 jJt (5’(x) - wo2 

G C(Xi+l)’ IJt12 jJ, (<“(X))2 (B-2) 

again using a standard result. Now if the mesh is of class (D, A), then dividing (45a) 
through by xi gives 

xi+l D -- l<- x4-1 

xi ‘M * 

<g x;-’ 

D D-l 

( ) 

2-l 
Q &p/(1--l) < D2-” 

using (45b). Thus for some constant C, depending only on D and I, 

xi+l 
- < c. 

xi 

Using this along with (45a) we obtain the estimates 

Combining this with (B.l) and (B.2) we find 

i (t - w2 + x2(5’ - ,1)2 < L$ xf + 21 j (y/)2 

J, J, 

C 
<- s M2 ~8 

x2 +2n(5”)2. 

(B.3) 

(B-4) 
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Now, consider the first interval J,,= (0, xi). Recall that U(x)= ((xl) on JO, in 
particular U’ = 0. Therefore 

using (45b). Now clearly, for XE JO, 

using Schwartz’s inequality. Thus 

u3.6) 

again using (45b). 
Thus, summing (B.4) over i = l,..., M- 1 and then adding (B.5) and (B.6) we 

obtain 

which suffices to prove part (ii) of the theorem. 1 

APPENDIX C 

Proof of Lemma 4.4. Condition (50a) is clear, while (50b) follows by the same 
sort of argument used in Lemma 4.1: Write 6 = (1 - (L/M)“Y)/(M - 1 ), then 
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xi+l-Xi=(Xf’Y+b)Y-X; 

= Xi( (1 + 6x,: “Y)? - 1) 

=xjGx;“yy(l +g)y--l 

by the mean value theorem, where 

This is bounded independently of A4 as M --f co since y > 1. Thus 

xi+1 -xi$cx!-“/y’6 

c 
<- xt -(l/y) 

A4 I 
. 1 

Proof of Theorem 4.5. The proofs of the two estimates of (52) are almost iden- 
tical. We shall only deal with the second here. By (37) we know that iI/ 5 (I/ ;. < co. 

Define U E %0 by requiring 

u(xi) = 5txi)9 i= l,..., M- 1. 

In addition we have since U E %0 and 5 E X0, 

Lyx,) = QXM) = 0. 

For the intervals Ji= (xi, xi+ l)r i= l,..., M- 1, we obtain the same estimates 
(B.l) and (B.2) as in the proof of Theorem 4.2. Instead of (B.3), we now have by 
(5Ob), 

xi+l D -- 1 <-xi-l <D2-“M-i 

xi 
‘M 1 ’ 

Since A > 0 we still have xi+, /xi d C, with C > 0 depending only on D and il. Thus 
the estimate (B.4) remains valid. 

Turn now to the interval Jo= (0, x,). By (36) and (19) we may write 

5(x) = 4xr + 5*(x), 

where ](I 5 * I)( ,, < cc and 

t*(x) = O(xa+l) as x-+0+, (C.1) 
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and for convenience we have set a = ~$9. So on Jo we have 

C(x)-acx,=i(,,-cc,,)(~)~ 

= (usxoL + 5*(x)) - (as-q + t*(xl)) 

0 
; 

a 

= 5*(x) - r*(xl) (z)’ 

=,,.,x,5*,x,,l+[,.,x,)(l-(~~)] 

=e1 +e, say. 

Just as in the proof of Theorem 4.2 (in the case A= 0) we obtain 

(C.2) 

I 
c ef + x2(e;)2 < 9 s (5*‘J2. 

JO JO 

For the remaining term of (C.2) note that 

j;’ (l-(g2+x”(g (;)“)2<cx, 
with C depending only on a. Introduce the notation 

15*la+l= sup T*(n) <co 
1 1 XE(0.1) x 

by (C.l). We therefore have 

I es + x2(e;)’ d C(t*(x,))’ x1 
Jo 

by (SOa) and the fact that a = al”) > -4. 
Now bringing together (C.2), (C.3), (C.4), and (B.4) we have 

(C.3) 

cc.41 

which suIIices to prove the second estimate of (52). 1 
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